Lesson B.1.1 (Day 1)

B-7. a: If s is the price of a can of soup and b is the cost of a loaf of bread, then Khalil's purchase can be represented by $4 s+3 b=\$ 11.67$ and Ronda's by $8 s+b=\$ 12.89$.
b: soup $=\$ 1.35$, bread $=\$ 2.09$
B-8. \quad Sometimes true; true only when $x=0$
B-9. a: It can be geometric, because if each term is multiplied by $\frac{1}{2}$, the next term is generated.
b: See graph at right.

c: No, because the sequence approaches zero, and half of a positive number is still positive.
B-10. a: 90 cm
b: 37.97 cm
c: $t(n)=160(0.75)^{n}$
B-11. a: $9 x^{4} y^{2} z^{8}$
b: $\frac{r^{3}}{s^{6} t^{3}}$
c: $6 m^{2}+11 m-7$
d: $x^{2}-6 x+9$

B-12. $\frac{150}{4.5}=\frac{90}{x} ; 2.7$ pounds

Lesson B.1.1 (Day 2)

B-13. a:

B-14. a: $a_{1}=108, a_{n+1}=a_{n}+12$
c: $t(n)=3780-39 n$
b:

b: $a_{1}=\frac{2}{5}, a_{n+1}=2 a_{n}$
d: $t(n)=585(0.2)^{n}$
B-15. a: 1.25
b: 0.82
c: 1.39
d: 0.06

B-16. a: No, by observation a curved regression line may be better. See graph below.
b: Exponential growth.
B-17. a: 94 years
b: From 1966 to 1999, 429 marbles were added, which means there were 13 marbles added per year.
c: 17

d: $t(n)=17+13 n$
e: In the year 2058, when the marble collection is 153 years old, it will contain more than 2000 marbles.

B-18. $a_{n}=t(n)=-2+6 n$

Lesson B.1.2

B-23. a: $y=1.8(3.2)^{x} \quad$ b: $y=5 \cdot 7^{x}$

B-24. Answers will vary.
B-25. They are all parabolas, with $y=2 x^{2}$ rising most rapidly and $y=\frac{1}{2} x^{2}$ most slowly. See solution graph at right.

B-26. 9 weeks

B-27. a: arithmetic $t(n)=3 n-2$
b: neither
c: geometric, $r=2$
d: arithmetic, $t(n)=7 n-2$
e: arithmetic, $t(n)=n+(x-1)$
f: geometric, $r=4$

B-28. $a_{n}=t(n)=4 \cdot 3^{n}$

Lesson B.1.3

B-34. Simple interest at 20%, let $x=$ years, $y=$ amount in the account, $y=500+100 x$.

B-35. a: $15,375,1875 ; y=15 \cdot 5^{x}$
b: $151,120.8,61.85 ; y=151(0.8)^{x}$

B-36. a: $8 \%, 1.08 \quad$ b: cost $=150(1.08)^{8}=\$ 277.64 \quad$ c: $\$ 55.15$

B-37. a: $y=125000(1.0625)^{t}$
b: \$504,052.30

B-38. a: $(4,-1)$
b: $(-1,-2)$
c: Part (b)
d: Part (a)
B-39. $P($ heads $)=\frac{1}{2} ; P($ tails $)=\frac{1}{2}$

Lesson B.1.4

B-45. See graph at right.
B-46. a: 0.40
b: \$32, \$2.05
c: $V(t)=80(0.4)^{t}$
d: It never will.
e: See graph below right.
B-47. a: Let $y=$ youngest child, $y+(y+5)+2 y=57$;
The children are 13, 18 and 26 years
b: Let $x=$ months, $y=$ insects, $y=2 x+105, y=175-3 x$;
14 months
B-48. a: $x^{2}-6 x+9$
b: $4 m^{2}+4 m+1$
c: $x^{3}-2 x^{2}-3 x$
d: $2 y^{3}-y^{2}+14 y-7$

B-49. a: $3 y+5=14, y=3$
b: $3 y+5=32, y=9$
B-50. $\$ 8874$
B-51. $0.8 \%, 9.6 \%, y=500(1.008)^{m}$
B-52. a: $x=-3$
b: $x=\frac{1}{2}$
B-53. a: $(-8,2)$
b: $\left(\frac{5}{3},-1\right)$

B-54. $y=\frac{9}{4} x+9$
B-55. a: let $x=$ amount paid, $\frac{8}{5}=\frac{x}{3} ; \$ 4.80$
b: Let $a=$ \# adult tickets, $s=$ \# student tickets, $3 s+5 a=1770, s=a+30 ; 210$ adult and 240 student

B-56. a: sometimes true (when $x=0$)
b: always true
c: sometimes true (for all x and $y \neq 0$
d: never true

Lesson B.1.5

B-59. See graph at right.
B-60. $y=4(1.75)^{x}$

B-61. a: $y=500(1.08)^{x}$
b: \$1712.97
c: $x \geq 0, y \geq 500$
B-62. Both have the same shape as $y=x^{2}$, but one is
 shifted up 3 units and the other is shifted left 3 units. See graph at right.

B-63. a: -10
b: $\frac{1}{2}$
c: -5
d: 3

B-64. a: $a=0 \quad$ b: $m=\frac{16}{17} \quad$ c: $x=10 \quad$ d: $x=9,-3$

Lesson B.1.6

B-71. a: $y=281.4(1.02)^{5}, 310.7$ million people
b: 343.0 million people
c: -34 million people. Population growth has slowed.
B-72. a: $a=6, b=2$
b: $a=2, b=4$

B-73. a: $\frac{3 x^{3}}{y^{5}}$
b: $\frac{m^{4}}{4 q^{4}}$
B-74. a: $2,6,18,54$
b: See graph shown above right. Domain: non-negative integers
c: See graph shown at right.
d: They have the same shape, but (b) is discrete and (c) is continuous.

B-75. $(-3,-6)$
B-76. See graph at right.

 tanks filled

Lesson B.2.1

B-85. a: $y=2 \cdot 4^{x}$
b: $y=4(0.5)^{x}$
B-86. a: $a=3, b=5$
b: $a=2, b=3$
B-87. a: -4
b: 2
c: -2
d: 10

B-88. Answers will vary.
B-89. Equation: $y=4 x-12$; intercepts: $(3,0)$ and $(0,-12)$

Lesson B.2.2

B-94. a: $y=5 \cdot 1.5^{x} \quad$ b: $y=0.5(0.4)^{x}$

B-95. a: 2, 4, 8, 16
b: 2^{n}
c: $\frac{1}{a^{-n}}=a^{n}$
B-96. a: $x=0,1,2$ and $y=-2,0,1$
b: $-1 \leq x \leq 1$ and $-1 \leq y \leq 2$
c: $x \leq 2$ and $y \geq-2$
d: x : all real numbers and $y \geq-1$
B-97. a: $\frac{3}{2}$
b: 3
c: 6
d: 2
e: Never; (0.3)
f: $\frac{2^{x}}{x}$

B-98. a: 16
b: 3125
c: 2187
B-99. 3

Lesson B.2.3

B-104. $y=7.68(2.5)^{x}$
B-105. a: 228 shoppers
b: 58 people per hour
c: at 3:00 p.m.

B-106. a: See table at right. The two sequences are the same.
b: The coefficient is the first term of the sequence, and

t	1	2	3	4
$t(n)$	12	36	108	324

c: See table at right.
Yes, both forms create the same sequence.
d: Because the coefficient is the first term of the

t	1	2	3	4
$t(n)$	10.3	11.5	12.7	13.9

B-107. $a_{n}=t(n)=32\left(\frac{1}{2}\right)^{n}$

B-108. $a_{n}=t(n)=2 \cdot 3^{n}$
B-109. a: $(-2,5)$
b: $(1,5)$
c: $(-12,14)$
d: $(2,2)$

