Lesson 5.1.1

5-8. a: $y=2(x+3) \quad$ b: Yes, $y=x$. See graph at right.
5-9. a: 9
b: 4
c: $x \approx 1.89$

5-10. $x=\sin ^{-1}(0.75) \approx 48.59^{\circ}$; to check: $\sin \left(48.59^{\circ}\right) \approx 0.75$

5-11. x must equal y.
5-12. $\mathbf{a}: \quad x=\frac{12}{5}$
b: $x=\frac{5}{2}$
c: $x=8$
d: $x=\frac{80}{3}$

5-13. The area between an upward parabola with vertex $(0,-5)$ and the downward parabola with vertex $(1,7)$. See graph at right.

5-14. a and b: See graph at right.
c: Possible equation: $y=10 x-5$
d: For this equation, approximately $\$ 495$.
5-15. ≈ 17.74 feet

Lesson 5.1.2

5-26. See graph at right.
5-27. a: $y=\frac{1}{3}(x+8)$
b: $y=2(x-6)$
c: $y=2 x-6$

5-28. $x \approx 0.53$
5-29. a: $x^{2}-5 x-14$
b: $6 m^{2}+11 m-7$
c: $x^{2}-6 x+9$
d: $4 y^{2}-9$

5-30. $(x+3)^{2}+(y-5)^{2}=9$. See graph at right.
5-31. a: $\frac{x-3}{x(x-4)}$
b: $\frac{4}{x-2}$
c: 2
d: $\frac{x-1}{x+1}$

5-32. a: $f(x) \approx 1.5(1.048)^{x}$
b: $\approx \$ 425.04$
5-33. See graph at right.
For $f(x)$, domain: $-2 \leq x \leq 5$, range: $-3 \leq y \leq 3$
For $f^{-1}(x)$, domain: $-3 \leq x \leq 3$, range: $-2 \leq y \leq 5$

5-34. a: $L(x)=x^{2}-1, R(x)=3(x+2)$
b: 30
c: Order does matter - show by substituting numbers; output is 224 if $x=3$ for $L(R(x))$.

5-35. a: The system has no solution.
b: The graphs do not intersect, they are parallel lines.
5-36. If she adds nothing else to the account and it just sits there making interest, she will have $\$ 440.13$ on her eighteenth birthday.

5-37. a: $x^{2}-10 x-56$
b: $4 m^{2}+8 m-5$
c: $x^{2}-81$
d: $9 y^{2}+12 y+4$
5-38. a: $(2,0),(-1,0)$
b: $(-5,0),(-3,0)$
5-39. $x=2.5$

Lesson 5.1.3

5-48. $121 \quad$ b: 17
5-49. a: $2 x^{3}+2 x^{2}-3 x-3$
b: $x^{3}-x^{2}+x+3$
c: $2 x^{2}+12 x+18$
d: $4 x^{3}-8 x^{2}-3 x+9$
5-50. a: $x=-\frac{10}{7}$
b: $x=\frac{1}{3}$ or $x=1$
c: $x=115$
d: $x=0$ or $x=4$
5-51. a: $y= \pm \sqrt{x-3}$
b: $y=4(\sqrt[3]{x}-6)$
c: $y=\frac{x^{2}+6}{5}$
5-52. $(x-2)^{2}+y^{2}=20$; circle, $x^{2}+y^{2}=r^{2}$, center $(2,0)$ and radius ≈ 4.5; See graph at right.

5-53. 70

5-54. a: 3
b: $y-4$
c: $\frac{1}{3 x}$
d: $\frac{x}{x-2}$

Lesson 5.2.1

5-60. Domain: $x>0$; Range: $-\infty<y<\infty$; x-intercept: $(1,0)$ no y-intercept; asymptote at $x=0$

5-61. a: undefined
b: $x \neq 7$
c: $g(3)=11$
$\mathbf{d}: f(g(3))=-\frac{1}{2}$
5-62. a: $e(x)=(x-1)^{2}-5$
b: One machine undoes the other so $e(f(-4))=-4$.
c: They would be reflections of each other across the line $y=x$. d: See graph at right.

5-63. See graph at right.
a: Domain: all real numbers, range: $y>-3$
b: No
c: $(0,-2),(1.585,0)$

d: Sample: $y+a=2^{x}$, where $a \leq 0$.
5-64. a: $x \approx 36.78$
b: $x \approx 31.43$
5-65. a: $\mathrm{B}=0.07(0.3 x)$ or $\mathrm{B}=0.021 x$
b: $\mathrm{S}=0.09(0.7 x)$ or $\mathrm{S}=0.063 x$
c: $0.084 x=5000 ; \$ 59,523.81$
5-66. a: $(x+7)(x-7)$
b: $6 x(x+8)$
c: $(x-9)(x+8)$
d: $2 x(x+2)(x-2)$
5-67. The region between the two parabolas, see graph at right.

Lesson 5.2.2

5-73. $x=2^{y}$, no, yes, yes; They have the same graph or give the same table of (x, y) values, or one is just a rewritten equation of the other.

5-74.
a: $x=\log _{5}(y)$
b: $x=7^{y}$
c: $x=\log _{8}(y)$
d: $K=\log _{\mathrm{A}}(\mathrm{C})$
e: $C=A^{K}$
f: $\mathrm{K}=\left(\frac{1}{2}\right)^{\mathrm{N}}$

5-75. a: $\$ 1.90,1.38,0.96,0.94,0.90,0.88$
b: decrease
c: Smaller size. Note: Sketching a graph of rate with respect to bag size like the one at right may help here.

5-76. Answers will vary. Possible answers:

a: Factor and use the Zero
b: Take the square root (undo)

Product Property (rewrite), $(-8,0)$ and $(1,0)$
c: Quadratic Formula
d: Complete the square (rewrite)
5-77. $x=-4$
5-78.
a: $x=17 \sqrt{3} \approx 29.44$
b: $x=4 \sqrt{2} \approx 5.66$

5-79. See graph at right. domain: $x \geq 0$, range: $y \geq 0, x$ - and y-intercept: $(0,0)$, no asymptotes, half of parabola: $y=\pi x^{2}$

5-80. a: A good sketch would be a parabola opening upwards with a locator
 point at $(-6,-7)$.
b: Shift the graph up 9 units.
c: The graph is the same except the region below the x-axis is reflected across the axis so that the graph is entirely above the x-axis.
d: See graph at right.
e: $y=\sqrt{x+7}-6$

Lesson 5.2.3

5-84. Possible answer: $y=2^{x}+15$
5-85. $y=\log _{7} x$

5-86. $n \approx 3.66$
5-87. $(x+2)^{2}+(y-3)^{2}=4 r^{2}$
5-88. $\$ 0.66$
5-89. See graphs at right.
a: The second is just the first shifted up ten units.
b: $y=k m^{x}+b$

5-90. a: $x=10$ or $x=-8$
b: $x=2$ or $x-4$
c: $-2<x<4$
d: $x \geq 3$ or $x \leq-13$
5-91. a: $x(x+8)$
b: $(x y+9 z)(x y-9 z)$
c: $2(x+8)(x-1)$
d: $(3 x+1)(x-4)$
5-92. a: 2
b: $\frac{1}{x+2}$
c: $\frac{x-4}{(x-2)(x-1)}$
d: $\frac{4 x+16}{x(x+2)}$

Lesson 5.2.4

5-96. a: 12 because $12^{\cdot 926628408}=10$
b: Answers will vary
5-97. a: $x=25$
b: $x=2$
c: $x=343$
d: $x=\sqrt{3}$
e: $x=3$
f: $x=4$

5-98. Less than one; Answers will vary.
5-99. $x \approx 17.973$

5-100. a: $(2 x+1)(2 x-1) \quad$ b: $(2 x+1)^{2} \quad$ c: $(2 y+1)(y+2) \quad \mathbf{d}:(3 m+1)(m-2)$
5-101. a: $-1<x<3 \quad$ b: $x \leq 1$ or $x \geq 2$
5-102. No; $\log _{3} 2<1$ and $\log _{2} 3>1$
5-103. a: $a=\frac{y}{b^{x}}$
b: b is the $x^{\text {th }}$ root of $\frac{y}{a}$, or $b=\sqrt[x]{\frac{y}{a}}$.
5-104. See graphs at right.

Lesson 5.2.5

5-112. $f(g(x))=g(f(x))=x$; They are inverses.

5-113. No. For $f(x)=m x+b, f(a)+f(b)=m a+b+m b+b=m(a+b)+2 b$ and $f(a+b)=m(a+b)+b$.

5-114. $x \approx 1.585$
5-115. a: $t(n)$ is arithmetic, $h(n)$ is geometric, $q(n)$ is neither
b: No, because $h(n)$ is increasing much faster than the other two.
c: $h(1)=q(1)=12$ and $t(2)=h(2)=36$; continuous graphs for $t(n)$ and $q(n)$ intersect but not for an integer n. $h(n)$ is increasing much faster than $q(n)$.

5-116. $s(n)=(50+7 n)^{2}-6(50-7 n)+17$, neither, it is quadratic and there is no common difference or multiplier.
5-117. a: $\frac{1}{10}$
b: 10^{x+m}

5-118. See graph at right.
5-119. $(-3,0,5)$
5-120. $m \approx 2.19$

5-121. a and b: $g(f(x))=|\log x|$ or $f(g(x))=\log |x|$, see graphs at right.
c: The \log of an absolute value is very different from the absolute value of a log.
d: See graph at right. Note that $x=0$ is an asymptote
5-122. $\frac{1}{2}$ no matter where X is placed.

5-123. $x \approx 1.68$

5-124. a: $\frac{6 x-21}{(x-4)(x+1)}$
b: $\frac{5+6 x}{2(x-5)}$
c: $\frac{1}{x+1}$
d: $\frac{5}{x^{2}-9}$

5-125. a: $b+a$
b: $3 d+2 c^{2}$
c: $x-1$
d: $x y$

