5-8.	a: $y = 2(x+3)$	b: Yes, <i>y</i> = <i>x</i> .	See graph	at right.	s k			
5-9.	a: 9	b: 4	c: $x \approx 1.89$)				
5-10.	$x = \sin^{-1}(0.75) \approx 48.59^{\circ}$; to check: $\sin(48.59^{\circ}) \approx 0.75$							
5-11.	<i>x</i> must equal <i>y</i> .							
5-12.	a: $x = \frac{12}{5}$	b: $x = \frac{5}{2}$	с: .	x = 8	d: $x = \frac{80}{3}$			
5-13.	The area between an upward parabola with vertex $(0, -5)$ and the downward parabola with vertex $(1, 7)$. See graph at right.							
5-14.	a and b: See graph at	$-6 \int_{-6}^{-6} \int_{-6}^{6} x$						
	c: Possible equation:	y = 10x - 5	ollars	100 = 01 ar	<i>†</i> [−] † †			
	d: For this equation, a	approximately S						
5-15.	≈ 17.74 feet		O	20 ± 24681012^{x} Weight (ounces)				

b: 30

c: Order does matter – show by substituting numbers; output is 224 if x = 3 for L(R(x)).

5-35. a: The system has no solution.

b: The graphs do not intersect, they are parallel lines.

- **5-36.** If she adds nothing else to the account and it just sits there making interest, she will have \$440.13 on her eighteenth birthday.
- **5-37.** a: $x^2 10x 56$
c: $x^2 81$ **b:** $4m^2 + 8m 5$
d: $9y^2 + 12y + 4$ **5-38.** a: (2, 0), (-1, 0)**b:** (-5, 0), (-3, 0)

5-39. *x* = 2.5

5-48.	121	b: 17		
5-49.	a: $2x^3 + 2x^2$ c: $2x^2 + 12x^2$	0	b: $x^3 - x^2 + x + 3$ d: $4x^3 - 8x^2 - 3x + 9$	
5-50.	a: $x = -\frac{10}{7}$	F 10	b: $x = \frac{1}{3}$ or $x = 1$	
	c: <i>x</i> = 115		d: $x = 0$ or $x = 4$	
5-51.	a: $y = \pm \sqrt{x - x}$	3	b: $y = 4\left(\sqrt[3]{x} - 6\right)$	c: $y = \frac{x^2 + 6}{5}$
5-52.	$(x-2)^2 + y^2 = 20$; circle, $x^2 + y^2 = r^2$, center (2, 0) and radius ≈ 4.5 ; See graph at right.			y
5-53.	70			+++ (+ -6

- **5-53.** 70
- **5-54. a:** 3 **b:** y 4 **c:** $\frac{1}{3x}$ **d:** $\frac{x}{x-2}$

5-67. The region between the two parabolas, see graph at right.

6 *x*

5-73. $x = 2^y$, no, yes, yes; They have the same graph or give the same table of (x, y) values, or one is just a rewritten equation of the other. **5-74.** a: $x = \log_5(y)$ b: $x = 7^y$ c: $x = \log_8(y)$ **d:** $K = \log_A (C)$ **e:** $C = A^K$ **f:** K = $\left(\frac{1}{2}\right)^{N}$ **5-75.** a: \$1.90, 1.38, 0.96, 0.94, 0.90, 0.88 **b**: decrease Rate **c:** Smaller size. Note: Sketching a graph of rate with respect to bag size like the one at right may help here. 10 $\dot{20}$ Bag size (pounds) **5-76.** Answers will vary. Possible answers: a: Factor and use the Zero **b:** Take the square root (undo) Product Property (rewrite), (-8, 0) and (1, 0)**c:** Quadratic Formula **d:** Complete the square (rewrite) **5-77.** x = -4**b:** $x = 4\sqrt{2} \approx 5.66$ **5-78.** a: $x = 17\sqrt{3} \approx 29.44$ **5-79.** See graph at right. domain: $x \ge 0$, range: $y \ge 0$, x- and y-intercept: (0, 0), no asymptotes, half of parabola: $y = \pi x^2$ **5-80.** a: A good sketch would be a parabola opening upwards with a locator point at (-6, -7). **b:** Shift the graph up 9 units. **c:** The graph is the same except the region below the *x*-axis is reflected across the axis so that the graph is entirely above the x-axis. **d:** See graph at right. **e:** $y = \sqrt{x+7} - 6$

5-84. Possible answer: $y = 2^{x} + 15$ **5-85.** $y = \log_7 x$ **5-87.** $(x+2)^2 + (y-3)^2 = 4r^2$ **5-86.** *n* ≈ 3.66 **5-88.** \$0.66 **5-89.** See graphs at right. **a:** The second is just the first shifted up ten units. **b:** $y = km^{x} + b$ 6x-6 **5-90. a:** x = 10 or x = -8**b:** x = 2 or x - 4**c:** –2 < *x* < 4 **d:** $x \ge 3$ or $x \le -13$ **5-91. a:** *x*(*x* + 8) **b:** (xy + 9z)(xy - 9z)**c:** 2(x+8)(x-1)**d:** (3x + 1)(x - 4)**b:** $\frac{1}{x+2}$ **c:** $\frac{x-4}{(x-2)(x-1)}$ **d:** $\frac{4x+16}{x(x+2)}$ **5-92.** a: 2 Lesson 5.2.4 **5-96. a:** 12 because $12^{.926628408} = 10$ **b:** Answers will vary

d: $x = \sqrt{3}$ **5-97. a:** *x* = 25 **c:** *x* = 343 **b**: x = 2**e:** *x* = 3 **f**: x = 45-98. Less than one; Answers will vary. **5-99.** $x \approx 17.973$ **5-100.** a: (2x + 1)(2x - 1) b: $(2x + 1)^2$ **c:** (2y + 1)(y + 2) **d:** (3m + 1)(m - 2)**5-101.** a: -1 < *x* < 3 **b**: $x \le 1$ or $x \ge 2$ **5-102.** No; $\log_3 2 < 1$ and $\log_2 3 > 1$ **5-103.** a: $a = \frac{y}{h^x}$ **b:** *b* is the x^{th} root of $\frac{y}{a}$, or $b = \sqrt[x]{\frac{y}{a}}$. 5-104. See graphs at right.

Core Connections Algebra 2

- **5-112.** f(g(x)) = g(f(x)) = x; They are inverses.
- **5-113.** No. For f(x) = mx + b, f(a) + f(b) = ma + b + mb + b = m(a+b) + 2b and f(a+b) = m(a+b) + b.
- **5-114.** *x* ≈ 1.585
- **5-115.** a: t(n) is arithmetic, h(n) is geometric, q(n) is neither
 - **b:** No, because h(n) is increasing much faster than the other two.
 - **c:** h(1) = q(1) = 12 and t(2) = h(2) = 36; continuous graphs for t(n) and q(n) intersect but not for an integer *n*. h(n) is increasing much faster than q(n).
- **5-116.** $s(n) = (50 + 7n)^2 6(50 7n) + 17$, neither, it is quadratic and there is no common difference or multiplier.
- **5-117.** a: $\frac{1}{10}$ b: 10^{x+m}
- 5-118. See graph at right.
- **5-119.** (-3, 0, 5)
- **5-120.** *m* ≈ 2.19
- 5-121. a and b: $g(f(x)) = |\log x|$ or $f(g(x)) = \log |x|$, see graphs at right.
 - **c:** The log of an absolute value is very different from the absolute value of a log.
 - **d:** See graph at right. Note that x = 0 is an asymptote
- **5-122.** $\frac{1}{2}$ no matter where *X* is placed.
- **5-123.** *x* ≈ 1.68
- **5-124. a:** $\frac{6x-21}{(x-4)(x+1)}$ **b:** $\frac{5+6x}{2(x-5)}$ **c:** $\frac{1}{x+1}$ **d:** $\frac{5}{x^2-9}$

5-125. a: b + a b: $3d + 2c^2$ c: x - 1 d: xy

