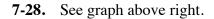

7-3. **a:** The shape would be stretched vertically. In other words, there would be a larger distance between the lowest and highest points of each cycle. **b**: Each cycle would be longer horizontally. Fewer cycles would fit on a page of the same length. See graph at right. domain: $x \neq 3$, range: $y \neq 0$, 7-4. asymptotes at x = 3 and y = 0 $f^{-1}(x) = \frac{2}{x} + 3$ **b:** ≈ 176.88 cm **c:** ≈ 28.94 meters **a:** ≈ 27.04 feet 7-5. $30-60:\frac{1}{2},\frac{\sqrt{3}}{2};45-45:\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}$ 7-6. $y = 6x - x^2$ 7-7. 7-8. $x = 5, x \approx 19.69$ does not check. **7-9. a:** $y = \left(x + \frac{5}{2}\right)^2 + \frac{3}{4}$, vertex $\left(-\frac{5}{2}, \frac{3}{4}\right)$ **b:** (0, 7) **c:** (-5, 7); See graph at right. **7-10.** No *x*-intercepts, *y*-intercept: (0, 88) **7-11.** $(x-1)^2 + y^2 = 30$; See graph at right. center: (1, 0), intercepts: $(\pm\sqrt{30}+1, 0)$ and $(0, \pm\sqrt{29})$

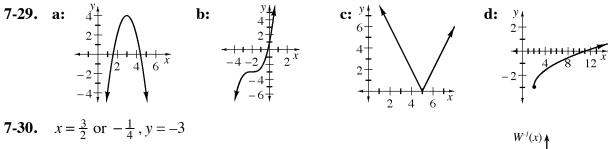
Lesson 7.1.2 (Day 1)

- 7-15. a: 30 60: hypotenuse: 2, leg: $\sqrt{3}$; isosceles: hypotenuse: $\sqrt{2}$, leg: 1 b: See diagram at right.
- **7-16.** ≈ 17.46°
- **7-17.** $x = 2, -\frac{5}{2}, y = -10$
- **7-18.** a: 0 b: 3 c: 4 d: 64
- **7-19.** *y* : 3; 4; 5; undefined; 7; 8
 - **a:** See graph at right. It is linear. The data does not all connect because f(1) is undefined.
 - **b:** y = x + 5, f(0.9) = 5.9, f(1.1) = 6.1, no asymptote.

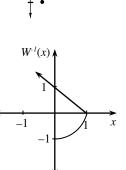
c: The complete graph is the line y = x + 5 with a hole at (1, 6).

60°

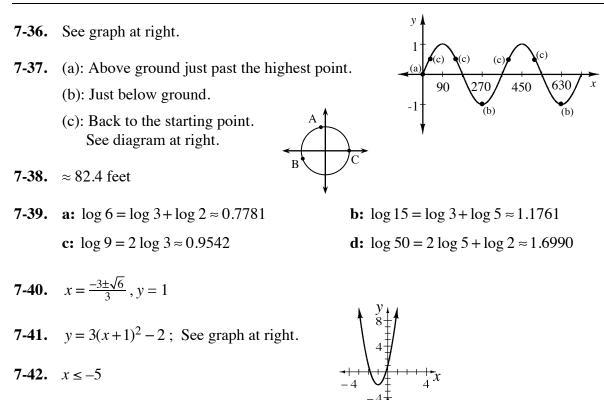

60


- **7-20. a:** An exponential function **b:** $y = 60000 + 12000(0.93)^t$
- **7-21.** If he drives down the center of the road, the height of the tunnel at the edge of the house is only approximately 23.56 feet. The house will not fit.
- **7-22.** a: $x \approx 33.752$ b: $x \approx 9.663$
- **7-23.** x = 18, y = 13, z = 9

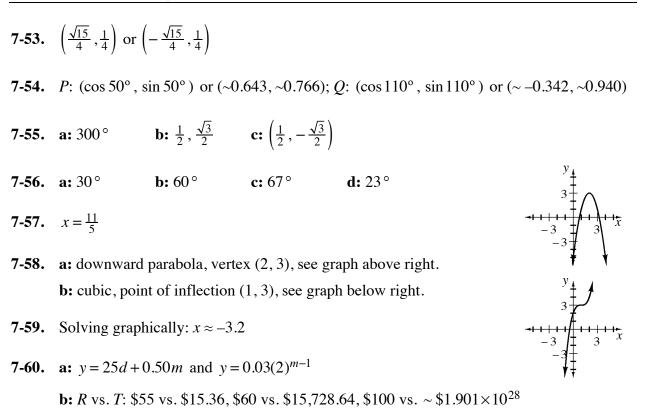
Lesson 7.1.2 (Day 2)


- 7-24. $-\infty < \theta < \infty$
- **7-25.** $\approx 40.5^{\circ} \text{ or } 139.5^{\circ}$
- **7-26.** She should have subtracted $3 \cdot 16 = 48$ to account for the factor of three. The vertex is (4, 7).

7-27. $\frac{1}{7}$



- 7-31. a: See graph at right.
 - **b:** No; when the points are interchanged, the input x = 0 has two outputs.
- **7-32.** R + B + G = 40, R = B + 5, R = 2G; 18 red, 13 blue and 9 green



4 8 ^x

- 7-43. No real solution.
- 7-44. C + W + P = 40, W = C 5, C = 2P; 18 from California, 13 from Washington, and 9 from Pennsylvania

Lesson 7.1.4 (Day 1)

7-61. All of these problems could be solved using the same system of equations.

Lesson 7.1.4 (Day 2)

7-62. 58°, 122°, 238°, or 302°	7-62.	58°, 1	122°,	238°,	or 302°
---------------------------------------	-------	--------	-------	-------	---------

- **7-63.** a: An angle in the 4^{th} quadrant. b: 270° or -90°
 - **c:** An angle in the 3^{rd} quadrant. **d:** Approximately 160°
 - e: No, an angle with sine equal to 0.9 has cosine equal to ± 0.4359 , so the point (0.8, 0.9) is not on the unit circle.
- **7-64.** a: (0.3420, 0.9397) b: $(\cos 70^{\circ}, \sin 70^{\circ})$ c: $(\cos 70^{\circ})^2 + (\sin 70^{\circ})^2 = 0.1170 + 0.8830 = 1$
- **7-65.** Graph 2 is sine, while graph 1 is cosine. Answers will vary.
- 7-66. a: All yes.

b: Answers will vary. **c:** $x = (-180^\circ + 360^\circ n)$ for all integers *n*

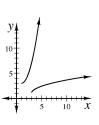
- **7-67.** y-intercept: (0, -17), x-intercepts: $(-2 + \sqrt{21}, 0)$ and $(-2 \sqrt{21}, 0)$
- **7-68.** a: x = -4 b: $x = \frac{5 \pm \sqrt{57}}{4}$ c: no solution

d: If $a = \frac{3}{x+2}$, then $a + 5 \neq a$. Or, solving yields x = -2, but when substituted, -2 gives a zero denominator.

7-70. Tess is correct: A sequence has no more than one output for each input. A sequence is a function with domain limited to positive integers.

^{7-69.} 7.07 '

- **7-77.** a: Same; π/3 and 60° are measures of the same angle.
 b: 45°, 135°, 405°, etc.
- **7-78.** a: $\frac{\sqrt{2}}{2} \approx 0.707$ b: $\frac{\sqrt{3}}{2} \approx 0.866$

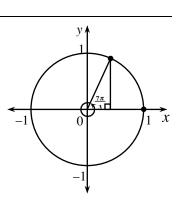

7-79. a: Set each factor equal to zero to get $x = 0, \frac{1}{2}$, or 3. b: Factor to get x(x - 1)(2x + 3) = 0. $x = 0, 1, -\frac{3}{2}$

- **7-80.** a: $x \approx 2.657$ b: $x \approx 0.936$ c: $x \approx -0.711$
- **7-81.** He should have subtracted $2 \cdot \frac{9}{4} = \frac{9}{2}$ to account for the factor of 2. The vertex is $\left(\frac{3}{2}, -\frac{5}{2}\right)$.
- **7-82.** a: $y = 3(x-3)^2 1$, vertex: (3, -1), axis of symmetry x = 3b: $y = 3\left(x - \frac{2}{3}\right)^2 - \frac{37}{3}$, vertex: $\left(\frac{2}{3}, -\frac{37}{3}\right)$, axis of symmetry: $x = \frac{2}{3}$

7-83. a:
$$x = 2.5121$$
 b: $x = \sqrt[5]{57y}$

7-84. See graph at right.
a: No
b:
$$-10 \le x \le 10, -10 \le y \le 10$$

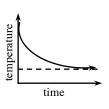
c: $\frac{200\pi}{3} \approx 209.44$ sq. units


7-85. $f^{-1}(x) = (x-1)^2 + 3$ for $x \ge 1$; See graph at right.

7-90.	a: –0.76	b: – –	$\frac{\sqrt{3}}{2}$		
7-91.	$\frac{\pi}{6}, \frac{5\pi}{6}$				
7-92.	$\frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{\pi}{3}$	$\frac{3\pi}{4}, \frac{5\pi}{6}, \pi, \frac{7\pi}{6},$	$\frac{5\pi}{4},\frac{4\pi}{3},\frac{3\pi}{2},\frac{5\pi}{3},\frac{5\pi}{3}$	$\frac{7\pi}{4}, \frac{11\pi}{6}, 2\pi$	y y
7-93.	See diagram a a: A little less b: $\sin 6 \approx -0.3$	than 360° (al	most 344°).		
7-94.	a: 1	b: $\frac{1}{2}$	c: undefined	d: 9	
7-95.	~ 4.73% annu	al interest			

- **7-96.** $\frac{\sin A}{\cos A} = \frac{\frac{3}{10}}{\sqrt{\frac{91}{100}}} \approx -0.3145$
- **7-97. a:** $f^{-1}(x) = \frac{x^3 + 1}{4}$ **b:** $g^{-1}(x) = 7^x$
- **7-98. a:** x = 4 or x = -2 **b:** $x \approx 2.81$

7-104. 420°					
а	$\frac{\pi}{3} \pm 2\pi n$				
b	b: See diagram at right.				
С	$\frac{\sqrt{3}}{2},\frac{1}{2},\sqrt{3}$				
7-105. a	n: 0	b: 0	c: –1		
d	l: 0.5	e: 0	f: undefined		
7-106. Some may set up a proportion, others may use $\frac{\pi}{180}$.					

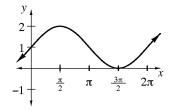


 7-107. a: 210° b: 300° c: $\frac{\pi}{4}$ radians

 d: $\frac{5\pi}{9}$ radians
 e: $\frac{9\pi}{2}$ radians
 f: 630°

 7-108. See graph at right.
 $y + f(x) = f(x) = 2(x-4)^2 + 2$ $y + f(x) = \frac{1}{5} + \frac{1$

b: Yes, the pizza will never get below room temperature.


d: 3*a* + *c*

7-116. a: See graph at right.

b: $y = 1 + \sin x$ **c:** $y : (0, 1), x : \left(-\frac{\pi}{2}, 0\right), \left(\frac{3\pi}{2}, 0\right), \left(\frac{7\pi}{2}, 0\right), \dots$

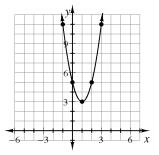
d: Yes, there are infinitely many, at intervals of 2π .

7-117. a: π b: $y = \sin(x + \pi)$

7-118. a: This may go up and down, but the cycles are probably of differing length.

b: This may or may not be periodic.

c: This is probably approximately periodic.


- **7-119.** $y = 100 \sin\left(x + \frac{\pi}{2}\right) 50$ or $y = 100 \cos x 50$
- **7-120.** Only one needs to be a parent, since $y = sin(x + 90^\circ)$ is the same as y = cos x.
- **7-121.** a: $y = 3 \cdot 6^x$ b: $y = -2(0.5)^x$
- **7-122.** a: $x = \pm \sqrt{\frac{3}{5}}$ b: x = 4, -1 c: x = 4
- **7-123.** a: $-\sqrt{3}$ b: $\frac{\sqrt{3}}{3}$
- **7-124.** $a = -\frac{3}{3125} = -0.00096$, possible equation: $y = -\frac{3}{3125}(x 125)^2 + 15$

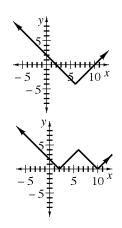
7-129. a:
$$y = \sin\left(x - \frac{\pi}{4}\right) + 2$$

b: $y = 1.5 \sin\left(x + \frac{\pi}{2}\right) + 0.5$
c: $y = -\sin\left(x - \frac{\pi}{6}\right) + 2$ or $y = \sin\left(x + \frac{5\pi}{6}\right) + 2$
d: $y = 3\sin\left(x - \frac{2\pi}{3}\right) - 1$ or $y = -3\sin\left(x + \frac{\pi}{3}\right) - 1$

- **7-130.** 360° is the period of $y = \cos \theta$, so shifting it 360° left lines up the cycles perfectly.
- **7-131.** Graphing form: $y = 2(x-1)^2 + 3$; vertex (1, 3); See graph at right.

7-132. a:
$$x = (0, 0), \left(\frac{5 \pm 3\sqrt{3}}{2}, 0\right)$$
 and $y = (0, 0)$

7-133. 17.67 years


7-134. a: $y = -2(x + \frac{1}{4})^2 + \frac{105}{8}$, x =all real numbers, $y = -\infty < y < \frac{25}{8}$; Yes it is a function. b: $y = -3(x+1)^2 + 15$, domain: all real numbers, range: $-\infty < y < 15$; Yes it is a function.

7-135. 64.16°, unsafe

- **7-136.** a: 5,000,000 bytes b: ≈ 12.3 minutes
 - **c:** According to the equation, technically never, but for all practical purposes, after 23 minutes.

7-137. See graph at right.

- **a:** The vertex of the graph is at (6, -4) with two rays emanating at slopes of ± 1 .
- **b:** See graph at right. Flip all parts of the graph that are below the *x*-axis above the *x*-axis.

- **7-144.** a: Amplitude 3, period 4π
 - **b:** See graph at right.
 - **c:** The differences are the period and amplitude, and therefore some of the *x*-intercepts. They have the same basic shape.

$$\int_{-3}^{y} \frac{4\pi}{\pi} x$$

7-145. 1, $\frac{2\pi}{2\pi} = 1$ or $2\pi(1) = 2\pi$

- **7-146.** Colleen's calculator was in radian mode, while Jolleen's calculator was in degree mode. Colleen's calculation is wrong.
- **7-147.** $y = \sin 2(x-1)$ is correct. To shift the graph one unit to the right, subtract 1 from x before multiplying by anything.
- **7-148.** They are both wrong. The equation needs to be set equal to zero before the Zero Product Property can be applied. $2x^2 + 5x 3 = 4$ is equivalent to (2x+7)(x-1) = 0. x = 1 or $x = -\frac{7}{2}$
- **7-149.** a: 3 b: 1.5 c: 2 d: 12

7-150. a: $y = 20\left(\frac{1}{2}\right)^x + 5$ b: w = 5.078

7-151. a: Answers vary, if g(x) is linear, tangent lines only.

b: Any line y = b such that b < -8.

7-158.	a: Yes	b: $y = \cos\left(x + \frac{\pi}{2}\right)$	c: $y = -\sin x$	
7-159.	6 cycles, period: $\frac{\pi}{3}$			
7-160.	Answers will vary.			
7-161.	a: 180°	b: 540°	c: $\frac{\pi}{6}$ radians	
	d: 45°	e: $\frac{5\pi}{4}$ radians	f: 270°	
7-162.	a: $\frac{-\sqrt{2}}{2}$	b: $\sqrt{3}$	c: $-\frac{1}{2}$	d: $\frac{\sqrt{2}}{2}$
	e: 1	f: $-\frac{1}{\sqrt{3}}$	g: $\frac{\pi}{4}$ or $\frac{5\pi}{4}$	h: $\frac{3\pi}{4}$ or $\frac{7\pi}{4}$
7-163.	$\left(-1,\frac{1}{2},2\right)$			
7-164.	a: $x = 0, x = -\frac{1}{2}$, or x	$c = \frac{5}{3}$		
	b: $x = 6$ or $x = -1$			
	c: Answers will vary.			
7-165.	a, b, and c: Answers	will vary.		
7-166.	a: About \$564,240	b: In 2025	c: About \$36,	,585